[image: image1.jpg]

Functions in C++

Introduction:

For the very early programming languages, we used to write all code in one code block, write all the code line after another in the same place and in order and the compiler used to read and execute them line by line in their order.

As programs grows longer, the number of lines became more, its complexity grew faster and higher, It became clear that code can’t be written in one block, and it must be broken into smaller blocks of code, simpler to use, simpler to debug and to understand.

The basic benefits about separating our code to many smaller blocks are:

1- Very easy to maintain each block separately.

2- Any block can do the same code it has many times as we wish.

3- When any block is destroyed it doesn’t affect on other blocks, so we need to repair it only not all other code we have.

 What is a function:

The function is simply a block that contains code to do certain operation, you can think about it as a factory that we give what we want and the material to make it, and receive the result.

How to define a function :

The function definition consists of 3 main parts:

1. Function name: it is just a name we call the function by (the same idea as naming variables), the function name must never include spaces or be a reserved word(you obey the same rules of naming the variables).
 These names are invalid: add numbers include, int, *.
While these names are valid: add_numbers, include_file, multiply.
2- Arguments (parameters): the second part of the function declaration is its arguments which are the data we send it to the function to operate correctly, like the 2 numbers to be added in a simple add function.

The arguments are written after the function name in brackets with commas separating each one from another, our add function should look like this:

 int Add (int x, int y)
As you see you must write the kinds of the data the function expects to get with its names, however it accepts any number of parameters you may send.
3- The return type: which is the type of data that function returns after it finishes its job, you may think about that as the final product of our factory.

We write the return type before the function name, if the function doesn’t return any value we have to give it the type ”void” (before the function name).

Notes:

1. The variables we declare in a function can’t be used directly in another, same for the data declared in the main, but it has to be passed first to the second function as arguments.

2. A function may take any number of arguments, and its arguments may be of different kinds of data types, like int, float, double and so on.

If the function we created doesn’t need to take any arguments, we leave the two brackets empty or write void in between.

3. A function can never return more than one value.

The function body:
 As we said, the function is a block of code, so far we saw how to declare it but didn’t write the code it includes yet.

 The function code is written between two braces following the declaration line, a simple add function will look like that:

 int add (int x, int y)

{

int result =x+y;

return result;

}

In the last line of code we saw the word return which returns the result of the function job, the product in our factory for example. If you define a function with return type int, it must have a return statement returning a variable of type int too (like our example, result is a variable of type int).

Important Note:

If you write your function after the main, and you wish to use it in the main, the compiler will not detect the presence of your function and will raise an error, this problem has 2 ways to be solved:

1- Write the whole function before the main function.
2- Write a prototyping for the function before the main function.

The prototyping for any function is just like its declaration line ended with semicolon.
Ex:

int add (int x, int y); // this is a prototyping for our simple add function.
How can we use a function?
In order to know how to create and use a function, we will give a simple example and go step by step in the code:

1-First you must write your main. Declare your function with its code between braces following its declaration, the code will look like that
#include <iostream.h>

void main ()

{

}
 int add (int x, int y)
{

int result= x+y;

return result;
}
2- The second step is to write a prototyping for the function you want to use, before the place you will use it in, here we want to use it in the main, so we will write its prototyping before the main and right after the include statements .

3- the last step is to call the function and give it the data it needs as arguments, the call consists of the function name followed by the data it needs between brackets

 add (5, 6);

The complete code will be:
 #include <iostream.h>

int add (int x, int y);

void main ()

{

int myresult=add(5,6);

cout<<”the result is :”<<myresult<<endl;

}

int add (int x, int y)

{

int result=x+y;

return result;

}

· passing variables:

 We have to ways to pass variables:
1- Pass by value which is the way we have been using so far.

In the pass by value, we actually get a copy of the data, so if we pass a variable called x that contains the value 5, we actually copied the value (5) into a local variable inside the add function, this can be considered as a fax machine, when you send a document using it, it sends a copy but NOT THE ORIGINAL DOCUMENT. So any kind of changes you make for the copy you receive through your fax will not affect the original document.

2- Pass by reference: in this method we don’t copy the data inside the variable we pass but we just rename the variable with a new name so that every change that you make to your copy of the variable affects directly the original one, simply because they are just the same variable having the same memory space but with 2 different names.
You may think about that as a shared document on the internet, any computer may connect and edit that document and any other computer connects later will see the changes all the others made for the document.

We use pass by reference when we need to return more than one data.

Example:

Let us consider a simple swap function that swaps two integer variables:

We will swap two values so we need to return the two values after swapping them, we all know that is impossible because a function can never return more than one result so will use pass by reference.

The program will look like that:

#include <iostream.h>

void swap(int & x, int & y);

void main ()

{

int x=5;

int y=6;

swap(x,y);
cout<<x<<endl<<y<<endl;

}

void swap (int & x, int & y)

{

int temp= x;

x=y;

y=temp;

}

Here we added the “& “operator in the declaration of the arguments in the function declaration, to tell the compiler to pass those values by reference and not by value.
No other changes are needed; we use the same calling as in call by value.
Notes:

· When we call a function, we must specify its parameters in order, so if the function is declared to take an int then a double, it must be called with the int parameter first then the double,
 A function declared like this: int multiply (int x, double y);

Must be called like: multiply (5, 66.666);

Overloading functions:

Some times we want our function to act differently if we change the kind of parameters sent to it, so we use function overloading.
Function overloading is to rewrite your function with the same name (and its prototyping) with a different no or kind of parameters and according to the number and kind of parameters you call the function with, it will call the right function.

As a simple example we will create a function that draws a line of a character on the screen, the function will have 3 shapes:

1- Having no arguments at all, it draws a line of 20 “*” on the screen.

2- Having one integer parameter, the function will draw the line of the character “*” using that integer value as the length of the line

3- Having an integer value and a character value, the function should draw a line of the character it receives on the screen using the integer it received as the line length.

The code will look like this:

#include <iostream.h>

void draw();

void draw(int x);

void draw(int x, char y);

void main ()

{

draw();

draw(5);

draw(5,’f’);

}

void draw ()

{

for (int i =0; i<20; i++)
cout<<”*”;

cout<<endl;

}

void draw (int x)

{

for (int i =0; i<x; i++)
cout<<”*”;

cout<<endl;

}

void draw (int x, char y)

{

for (int i =0; i<x; i++)
cout<<y;

cout<<endl;

}

The previous code will output 3 lines on the screen, the first of the character * with length 20, the second of the same character with length 5, the third with length 5 and character “f”.

Note:

In all the function shapes (overloads) they must have the same name and the same return value.

Important Notes:
1- You can pass variables of any type to functions that include user defined structures and built in data types.

2- You can pass arrays to functions as arguments, but you can’t return arrays as return values.

3- Passing arrays to functions is written as if you are making a pass by value, but actually passing arrays to functions is made by reference, so every change that happens for the array inside the functions, affects the original array outside the functions.
Example:
#include <iostream.h>

Void addtoraay(int x [5])

{for(int i=0;i<5;i++)

x[i]+=5; //add 5 to each element of the array;

}

void main ()

{

int x[5]={0}; //initialize the whole array with zero’s.

addtoarray(x) //in the function call just write the name of

 //the array without index or square brackets

for(int i=0;i<5;i++)

cout<<x[i];

}

In the previous example we saw how arrays are passed to functions, and proved that they are passed by reference, the result of the previous example will be array of 5’s as a result of adding 5 to each element in the array.

PAGE
1
-Powered by OctoSoft Enterprises-

