Introduction to C++ programming
Course overview:

This course is aimed to teach one of the most fundamental programming languages, C language as an example and introduction to the programming world.
The course doesn’t go so deep in the details of the C++ and its related topics like object oriented programming, but it just includes the basics of any programming language which are the basic set of skills needed

The material recommended for this course is :

“Object oriented programming using C++”
By lafore

Some basic concepts:

Why do we program:

 The computer can never be regarded as a creative or intelligent device, but it is just a piece of silicon circuits that doesn’t have a mind of its self

The benefits of the computer is its
1-accuracy and
2-its high speed in manipulation several problems.

 But it still unable to think or to find answers of its own, so we use programs.
A program is a set of instructions written in a manner that the computer can understand, those instructions tell the computer how to behave in a specific problem

The manner we write the program is the language program we use

Programming language & compilers:

 for the computer to understand what you want him to do, you need to talk to him in the language he understands, the only language the computer understands is the machine language which is just a set of 0’s and 1’s, so in order to write a single command for the computer you may need to write some thing like this:
00110100110010100, that way was a very hard and time consuming way for programmers, and it was hard to maintain and to correct errors, from this point the need for a simpler and more advanced language aroused.

In order to make programming easier we needed to develop new languages nearer to our spoken languages like English, and the more the language is near to English the higher its level is.

Now we have two kinds of languages:
1- Languages near to the computer language which is called low level languages.

2- languages near to English language and it is called high level language

For that the high level languages consists mainly of combinations of the English words, We still need something to translate what we wrote almost in English into the language the computer understands (machine language) and that is the rule of the compiler

The compiler is and intermediate level between your program and the computer
It translates the words and phrases you write into machine language so the computer will understand it and execute it.
Now you can write your program in a simple way near to English language and rely on the compiler to take care of translation process to machine language.
Now we can advance to see the construction of the program in the C language.

Program construction in C++:

Let’s consider the simplest program represented next:

#include <iostream.h>

void main ()

{

cout<<”hello C++”;

}

in the real programs we may find a program that consists from over 1,000,000 lines of code, that may be confusing for the programmer, makes programs hard to read, hard to correct errors and hard to maintain.

The key solution for this problem was by breaking the program into smaller blocks of code, simpler code blocks that can be maintained separately and can be easily corrected.

In C++, the program is usually divided into smaller blocks of code, each block of code must begin with an opening brace ” { ” and end with a closing brace “}”.

One of the most important kinds of code blocks is functions which will be discussed later during the course

The main program body is a function called: main ()
The main is the functions that represents the whole program, when the computer runs the program, it searches for the main and begin with the first line of code inside it and closes when it reaches the last line, an empty program may look like this:
void main ()

{

}
statement:
inside our example program’s main we find the line of code: cout<<”hello C++”;

This is a very good example of code lines or statements in c++ as it always ends with a semicolon, and it begins with the keyword cout which tells the computer to bring what is included between the double quotation marks on the screen.

The #include directive :
Here we meet a critical point in C++, the C language doesn’t have a built in support for anything, so you have to build your program from the ground up, but for your convenience, the C language offers you some ready sets of functions, those functions are a common purpose functions and they are essential to any program, one of them is the functions we just met called “ cout” to print out a word on the screen.
The code needed for those built in functions is not automatically considered part of you program until you till the program to do so , to do that you must give the program the location of the code you may use in your program.

In order to include any set of code files in our program we use a keyword in C++,
“#include” this word tells the compiler to open a file and reads all code inside it, the file name comes on the right of this word and is always surrounded by <> like the first line in our example : #include <iostream.h>

All code files we may include in our programs are ended with the extension .h.

Main structure of a program:

Whatever the problem we are trying to solve using computer and independent of the programming language we may use, all programs consists of two major elements:

1- data

2- Functions on those data.

The data we use may be the length of a square in a geometric program or the age of a student in a school database program, the functions on the data may include the process of getting the area of the square or the average age of school students.

In order to use data in our programs, we must save them a place in the computer memory, so that we may save, edit, retrieve and manipulate the data quickly during the program runs, to do this we have to declare variables.
Variables is places for data in memory, we reserve a place for our data, and call that place a name by declaring a variable

The major types of data variables we have are:

1- Int which is the most used data type; it takes 2 bytes of memory space and is used to hold integer data (like 1, 2, and 5).

2- Float which is the second most important data type, it takes 4 bytes of memory space and it is usually used to hold fractional numbers like 2.4, 3.55 .

3- Char and this type is a very special type as it may be used to represent numbers or characters as we will see in moments, this type takes 1 byte of memory space.
4- Double: and this is a data type that carries fractional data just like float but it has wider range as it takes 8 bytes of memory space .

5- Bool: this is a very special data type as it doesn’t carry characters or numbers , but it just carries the logic 0 and 1 so it has just two values :

True or false.
To declare a variable we must supply two main properties:

1- The variable type, like int, chars, or float.

2- The variable name which is a name we call this variable so we can use it in the program.

 Example of declaring a variable may look like this:

Int squarelength;

Here we wrote the type of the variable first followed by the variable name and ended by the semicolon .

To name a variable we have to follow some restricted rules those rules are:

1- the variable name consists of the English characters only and the underscore , you can’t use any other special character, like % , some thing like the following will not work:

int benefit%; // error

2- the variable name can’t include white spaces, the whole variable name must be one word so you can’t use the next syntax:

int square length; // error

3- you may use numbers in your variable name but the first character of your variable name must be a letter or an underscore “_”
int 2pi; // error

int pi2; // allowed

4- try to give a meaningful names for your variables, this is not a must but a good practice as it make the revision and correction of the program easier

int x1; // allowed but not recommended

int square_length; //allowed and recommended, the program looks

 easier to understand

Character representation in C++ (Asci representation):

In C++ all characters of English and some of the common special characters are represented and manipulated in the computer as numbers for example, the capital letter A is represented by 65 and 66 represents the capital B and so on, but to distinguish real numbers from those used to represent characters by using the type char for the numbers representing characters.

Input / Output operations:

To input a value from the keyboard or to output the value on the screen we use a special syntax for each case,

1- output using cout:

To output a value we write the keyword cout then we use the operator << then we write the value to be printed on the screen and end the line with semicolon, ex:
Cout << “this is a test”;

To print the contents of a data variable we put the name of the variable without quotation marks after the operator <<, ex for that may be:

Int length;

Length=10;

Cout<<length;

The output of this program will be 10.

To output multiple values we may cascade the output operator << like the next example:
Cout << “length=” << “ ”<< length;

The output of this line will be: length= 10

To force the program to begin writing the next value from the beginning of a new line you may use the keyword “ endl”, cascade it as a value to be outputted on the screen
cout<< “maged shafie Mohammed”<<endl<<”computer science”;

The output of the previous line will be like that:

 Maged shafie Mohammed
Computer science

2- input using cin:
to input data into a variable, we must first declare a variable to hold the data we will input from the keyboard, then we use the next synax:

cin>>squarelength;

the last code line takes input from the keyboard as the user inputs the data and puts this data into the variable called squarelength.

Here we must be careful of type matching that the data the user inputs must be of the same data type as the variable we use to hold the data , the following code will not work properly if the user inputs a name like “maged”:

Int age;

Cin>>age;

That is because we just declared a variable of type int which holds integer data and we are trying to input a word inside which for sure will not match the int data type.

Assignment :

While we write our code we may use to set a variable value to some constant value, that may be like

Int x;

X=5;

As we just seen this can be done by using the assignment operator “=” then we write out the constant value we want to use.

Arithmetic operators:

Arithmetic operators like *, / , +, - are used in c++ in almost the same manner it is used in math .

You may write something like that in c++

Int , x1,x2,x3,x4;

X4 = x1 + x2*x1 /x3 +6;

Note:
The right hand side of any arithmetic statement like the previous one must be the name of a variable , it can’t be an expression the following code is not allowed in c++:

X1+x2= x1*x2/2 // error

Arithmetic precedence :
the order of arithmetic operations in a complicated expression is the same as the order in math, the multiplication and division is made first, then addition or subtraction

if you want to force part of a complicated expression to be done first you use parentheses.

Example:
determine the result of the following code:
#include <iostream.h>

void main()

{
int x1=5;
int x2=6;

int result;

result=x1*5+x2;

cout<<result<<endl;

result =x1* (5+x2);

cout<<result<<endl;

}

Answer:
The result will be:

31

55

here we realize that in the second arithmetic expression we used parentheses to force addition to be executed first.

Automatic conversions :
One of the important related topics to mathematical operations is automatic type conversions , consider the following example:

Int x=6;

Int y=5;

Float result=x/y;

Cout<<result;

Here the result is not as expected which is 1.2 but it will be 1

Why? The answer is to know how the computer deals with the arithmetic expression we just wrote:

1- First the computer brings the values of both x, and y.

2- Second the computer devides the two values .
3- Third the computer checks the data type of both variables and then creates a temporary data location in the memory to hold the result of the devision, this memory location will be reserved to match the type ot the x and y, so in our example it will be int too

 That was the reason that the computer took just the integer part of the result , but in order to force the computer to use the data type we want we use type casts.

Type casts:
In the previous example we saw how the automatic type conversion results in the loss of part of the data which is the fractional part, so if we want to force the computer to use a special data type in the temporary data memory we use the cast syntax.

The cast syntax consists of the desired data type put between parentheses before the expression we deal with

If we modify the previous example so that the expression look like that:

Result= (float) x/y;

The result now will be 1.2 as we always wanted.

Powered by octosoft

Maged shafie mohammed

Magedus77@programmer.net
