C++ Labs (Notes no. 2)

Statements:
In programming languages we use many commands. Each does some thing for us depending on its type. We use any of them where and when we need depending on our program logic.

These statements are separated into 3 basic types:

1) Conditional (شرطي) statements.
2) Iteration or loop (تكراري) statements.
3) Jump statements.

Operators:

 We use some useful operators with these statements and they are separated into 2 main types:

1) Arithmetic operators:

	>
	Greater than

	>=
	Greater than or equal

	<
	Less than

	<=
	Less than or equal

	==
	If equals(comparing)

	!=
	Not equal

 2) Logic operators:

	&&
	Logic AND

	||
	Logic OR

	!
	Logic NOT(inverter)

Now we will explain each statement in more details.
-Powered by OctoSoft Enterprises-

1) Conditional statements:

 Some times you need to make a decision or that your program executes some thing specified if some thing happened .
 When some thing happens(called an expression or condition)—the expression becomes true—the program executes a certain code you write.

Example:

If we wish to write a program that results the grade of a student depending on his marks.
The condition here is the student’s marks and the code will be executed is evaluating his grade.

In C++ we have 2 basic conditional statements:

1) if statement:
The basic form of (if) is:

if(expression or condition)

{

 your code;

}

here the compiler first checks the condition if it’s true it executes the code written between braces. If it’s false it skips all the written code between braces and goes directly to the first statement after the (if) block.

Example:

If(mark>=85)

{

 cout<<”The grade is excellent”;

}
Some times you need to execute certain code if the condition is true or to execute another code if the condition is false. You can do this by using if-else statement.
if(expression or condition)

{

 your code;
}

else
{
 your code;
}
-Powered by OctoSoft Enterprises-
Example:

if(mark>=50)

{

 cout<<”succeeded”;
}

else
{
 cout<<”failed”;
}

-The if-else ladder:
 Code A Code B
If(mark>=85) if(mark>=85)
{ grade=’A’;
 grade=’A’;
} if(mark<85 && mark>=75)
else if(mark<85 && mark>=75) grade=’B’;
{

 grade=’B’; if(mark<75 && mark>=65)

} grade=’C’;

else if(mark<75 && mark>=65)

{

 grade=’C’; if(mark<65 && mark>=50)

} grade=’D’;
else if(mark<65 && mark>=50)
{ if(mark<50)

 grade=’D’; grade=’F’;

}

else

{

 grade=’F’;

}
These 2 codes result the same (evaluate a student grade depending on his mark).

However, we say that code A is better. A closer look to both codes can explain why.

Assume that the student mark is (90). For code A, the compiler will check the first expression (mark>=85) then it’s true, the compiler executes the code associated with that condition block (grade=’A’;) and skips all other conditions (no need to check all other conditions that the first one is true) and goes directly to the first statement after the if-else ladder block.

But for code B, the compiler checks the first expression (mark>=85) then it’s true so it executes the code associated with that condition (grade=’A’;) and goes to the next statement i.e.) it goes to the next if block, it checks the condition (mark<85 && mark>=75) it’s false so it skips the if block and continues to the next statement (the next if block) and so on. That

-Powered by OctoSoft Enterprises-
means code A checks only one condition, but code B checks all conditions, and for a larger code it will take more time.

-The Nested if :
 Some times we have more than one condition we must check them all to do certain code

i.e.) we must check many conditions and all are true to execute our code.

We can do this by a large expression consists of many small expressions relational together by logic operators ((mark<85) && (mark>=75)) or using the nested if statements.

if(1st expression)

 if(2nd expression)

 if(3rd expression)

 .

 .

 .

 .

 if(nth expression)
 {

 your code;

 }
Example:

 if(math==’p’)

 if(physics==’p’)

 if(circuits==’p’)

 if(electronics==’p’)

 {
 cout<<”clear”;

 }

2) switch statement:

 When a variable takes some certain specified values and for each value of it we wish to execute certain code i.e.) when it takes value X do this

 when it takes value Y do this

and so on, we can do this using an if-else ladder with many if statements or use a switch statement.
-Powered by OctoSoft Enterprises-
switch(variable or expression)

{

 case 1st value:

 your code;

 break;

 case 2nd value:

 your code;

 break;

 case 3rd value:

 your code;

 break;

 .

 .

 .

 .

 .

 case nth value :
 your code;

 break;

 default:

 your code;

}
The compiler enters the switch block and checks case by case, if a case is matched it executes the code associated with it, then break statement results the compiler to exit the switch block.

Notes about switch statement:

1) The variable you switch should be ONLY a (char) or (int) type. Also the expression you use should results a (char) or (int) type only.
2) No tow cases can have the same value in one switch statement, however in tow (or more) different switch statements they can have the same value.

3) break statement results to exit the switch block when it finishes executing the code associated with the matched case. However break statement is optional, you may not use it. If a case is not ended with a break statement the compiler continues to the next statement and executes the code without checking the value. Also you don’t need a break statement for the last case that the switch statement is already finished.
Example:

 int i;

 cin>>i;

-Powered by OctoSoft Enterprises-
switch(i)

 {

 case 1:

 cout<<”ok”;

 break;

 case 2:

 cout<<”bad”;

 case 3:

 cout<<”error”;

 }
for this example assume first the user entered (1), the program displays “ok” on the screen.

But if the user entered (2) for example, the program displays “bad error”.
4) The default statement is optional. We use default to execute certain code when no matched case is found, you may not use it. However the compiler executes nothing if no matched case is found and a default is not used.

 2)Iteration statements:
 Some times you want to repeat a certain code for a specified number of times, or to execute the same code if a condition remains true until it becomes false. You can do this by using the iteration statements.

In C++ we have 3 main types of iteration statements:

 1) while loop.

2) do-while loop.
 3) for loop.

1) while loop:
The basic form of while loop is

while(expression or condition)

{

 your code;

}
-Powered by OctoSoft Enterprises-
Here the compiler first checks the condition if it’s true it executes the code written between braces, then it returns back to the loop condition to check it again if it’s true it executes the code again and so on until the condition becomes false then it skips the code written between braces and goes directly to the first statement after the loop block. However if the condition of the loop is false before the first iteration it skips all code written between braces. So the condition must becomes false to exit from the loop, then you need to change the loop condition to become false in the code written inside braces for the next iteration to not be executed. If you didn’t change the loop condition to become false the loop will iterate forever and then it’s called infinite loop and results in a bug destroys the program.

Example:

//This code displays numbers entered by user until zero is entered

 int i=1;
while(i!=0)

{

 cin>>i;

 cout<<i;

}
2) do-while loop:

 do-while loop is the same as while loop except that at the first iteration it executes the code written between braces first then checks the condition, that’s mean it executes your code at least once. But after the first iteration is completed the compiler checks the condition first then executes the code written between braces if the condition is true. That also means if the condition is false before the first iteration it will be executed and next iteration it won’t.

The basic form of do-while loop is:

do

{

 your code;

}while(expression or condition);

Note: you must not forget the (;) after the while statement.
Also here you must change the condition to become false so it doesn’t result in an infinite loop.

Example:

//This code displays numbers entered by user until zero is entered

int I;

-Powered by OctoSoft Enterprises-
do

{

 cin>>I;

 cout<<I;

}while(I!=0);

3) for loop:

 The for loop is the most common loop in C++ language. The basic form of for loop is:

for(initialization ; condition ; step)

{

 your code;

}

A for loop consists of 3 basic statements initialization, condition and step.

The for loop is controlled by a variable (counter or stepper) called control variable. The initialization is a statement that sets the initial value of the control variable. Condition statement is a condition the compiler checks and executes the code written between braces if it’s true. Step statement identifies the step the control variable changes by every iteration.
The compiler first initializes the control variable, then checks the condition if it’s true it continues. It then executes the code written and changes the control variable by the value identified by the step statement. After this it checks the condition again if it’s true it continues and so on, if it’s false it exits from the loop and goes directly to the first statement after the loop block. The step can be incrimination or discrimination and by any value. Note that if the condition is false before the first iteration it won’t iterate at all.

Example:

//This code displays numbers from 0 through 9

for(int i=0;i<10;i++)

{

 cout<<i;

}

Here the compiler first sets a control variable (i) by (0), then checks the condition (i<10), it’s true so it executes the code (displays the value of (i) on the screen) and then increments (i) by (1). It returns back to the condition to check again and so on. The last iteration (i=9) the compiler increments (i) by (1) so its (10) and then checks the condition (10<10) so it’s false, it won’t iterate and exit from the loop.

-Powered by OctoSoft Enterprises-
Notes on for loop:
1) The for loop is the most common loop in C++ and it’s most used as a counter.

2) You can leave any of the for loop statements empty or all of them.

3) A for loop without a condition statement becomes an infinite loop unless you write the condition with a break statement inside the code written between braces. But this technique is useless.

4) A for loop without a step statement continues to iterate normally until the condition is false. You may write a step statement inside the code written between braces.
5) A for loop without an initialization statement needs the control variable to be initialized first before the loop.

6) If all statements are empty the for loop becomes an infinite loop.
7) You can make a time delay loop by using for loop as a counter which its condition is true for a large number of iterations. And its code is an empty statement (; only).

Example:

For(int i=0;i<1000;i++) ;
8) You may write more than one statement for each part of for loop. i.e.) you can write more than one initialization statement or condition statement or step statement. You must separate them by (,) as follows:

Example:

For(i=0,j=10;i<10,j>0;i++,j--)

{

 cout<<i<<endl<<j;

}
Note: an empty statement is a statement ends with a (;) without writing any code. For this the compiler will do nothing.

-Powered by OctoSoft Enterprises-
3) Jump statements:

 Some times you may need to jump from one statement to another far away -maybe before or after that statement- breaking by this the normal sequence of your program compiling. Other times you need to exit from a loop before its all iterations is completed. Jump statements are used for this.

In C++ we have 3 basic jump statements:

1) break.

2) continue.
3) go to.
1) break:

break statement is used with loops. It causes to exit the loop to the first statement after the loop block (break;).

2) continue:

continue statement is used with loops also. It causes the loop to exit the current iteration and start the next iteration immediately (continue;).

3) goto:
goto statement is used in any part of your program without any conditions. It causes the compiler to jump from one statement to any other one in your code. It breaks the normal sequence of your program compiling, therefore it’s strongly recommended NOT TO USE goto and try to find a more simple and better way to solve your problem.

When you use goto you need to specify the place (statement) where the compiler should go, therefore you must write a specific word before the statement you wish to go to.

 start: cout<<”hello”;

 .

 .

 .

 .

 goto start;
-Powered by OctoSoft Enterprises-
